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away from the molecular plane are 0.027 and 0.020 
e.A -3 respectively. A search for bonding-electron ef- 
fects, which may be of the order of 0.1 e.A -3, was thus 
amply justified. 

Within the framework of the molecule the most 
significant peaks are at the bond centres, and are dis- 
tributed roughly as expected from the work of O'Con- 
nell, Rae & Maslen (1966). However, the resolution 
is not as good, and the maximum densities, with the 
possible exception of the C(2)-N(2) bond, are not 
quite as high as expected for a well ordered structure. 
Outside the molecular framework there are significant 
features between the substituent oxygen 0(2) and the 
nitrogen with two bonds N(1), and another significant 
peak on the other side of 0(2) at the same radial dis- 
tance as 0(2) from the ring centre. It is readily seen 
that all the significant peaks can be generated by ar- 
ranging the molecule with the central ring in very 
nearly the same orientation, but with the molecule as 
a whole having either opposite sense, and/or an orien- 
tation corresponding to a rotation of 60 ° about the 
threefold molecular axis. There are no significant fea- 
tures of the synthesis which cannot be explained on 
this basis, and one must conclude that, notwithstand- 
ing the low final R value of 4.0%, the structure is dis- 
ordered. The amount of disorder is small, but is suf- 
ficient to preclude a detailed examination of the effects 
of the bonding electrons in the structure. It is to be 

expected that this disorder will have resulted in incor- 
rect thermal parameters, especially for the outer atoms. 
It had already been noted by Cady, Larson & Cromer 
(1966) that the thermal parameters are not consistent 
with a rigid body model for the structure. This was 
attributed by these authors to flexibility in the furoxan 
rings, but in the light of the evidence from the difference 
map the effect of disorder provides a more probable 
explanation for this inconsistency. 
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The effects of scale and phase angle errors on the accuracy of electron-density distributions are discussed. 
It is shown that scale factor errors may result in errors in the electron density at the atomic centres 
which are several times the standard deviations calculated by the normal method. The phase errors 
have a systematic effect on the difference density, which makes a quantitative analysis of the electron 
distribution impossible unless the structure is either eentrosymmetric or phase-refined. 

Introduction 

Cruickshank (1949a, b; 1950a, b) has derived expres- 
sions for the standard deviation of the structural par- 
ameters and the electron-density distributions in crys- 
tal-structure analysis. In a more recent paper Cruick- 
shank (1960) has used these expressions to determine 
the conditions necessary to attain certain desirable 
levels of precision in crystal-structure analysis. The 
standard deviations are related primarily to errors in 
the observed structure factors Fo. It is assumed that 
these errors are random, or may be treated as random 

for the parameter in question. In general this assump- 
tion appears to be satisfactory, although it has been 
shown on a number of occasions (e.g. O'ConneU & 
Maslen, 1967) that the effects of systematic error may 
in some cases be considerably greater than those of 
random errors of similar magnitude. This has led some 
workers (e.g. Hamilton, 1965) to suggest the applica- 
tion of a correction factor to the calculated standard 
deviations in assessing their significance. The correc- 
tion factor appears to be somewhat arbitrary, however, 
and a more systematic approach to the problem is to 
be preferred. Systematic errors invalidate the calcula- 
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tion of standard deviations only if they do not fulfil 
the conditions of the Central Limit Theorem (Cram6r, 
1946) which usually happens in one of two ways. 
Either the effects of the errors on the parameter being 
considered are largely cumulative, or the calculation 
is dominated by large inaccuracies in a small number 
of terms. It is important in assessing the validity of 
calculated standard deviations to test for effects of this 
kind. If such errors are present predictions based on 
the calculated standard deviations must be regarded 
with suspicion, and conversely.* 

S c a l e  e r r o r s  

One factor which has a systematic effect on the elec- 
tron-density distribution is the scale error in the ob- 
served structure factors. This does not occur directly 
in Cruickshank's standard-deviation formulae for the 
electron-density distribution. It is instructive to recal- 
culate these formulae in a form which includes the 
scale and phase errors explicitly. The power of a beam 
reflected from a set of planes in a crystal is given by 

P =  vA yloQ (1) 

where v is the crystal volume 
A is the absorption factor 
y is a factor arising from extinction and multiple 

scattering 
Io is the intensity of the incident beam 

and 
e2Fo [ 2 

Q= i mc2 V 23Lp (2) 

e and m are the charge and mass of the electron 
e is the velocity of light 
V is the unit-cell volume 
2 is the wave length of the radiation 

and L and p are the Lorentz and polarization factors 
respectively. 

The values of e, m, c and 2 are known accurately, 
and it is a comparatively trivial matter to reduce the 
uncertainties in the calculation of A, V, L and p to a 
level where they make no appreciable contribution to 
the error in P. The quantity VIo fulfils the role of a 
scale factor. In general it is difficult to estimate the form 
of the error in y, but if care is taken it is possible to 
avoid multiple scattering and to make a reasonably 
accurate correction for extinction (Zachariasen, 1967). 
Vainshtein & Kayushina (1966) have shown that the 
form of the electron-density distribution is determined 
primarily by the stronger terms, and in these circum- 
stances the effects of a residual error in y should not 
be greatly different from those due to a residual error 

* Alternatively, a lack of validity of predictions from stan- 
dard deviation calculations may result from non-linearity of 
the residuals as functions of error over the range of errors 
present (Hamilton, 1965). For accurate work this is unlikely, 
and can usually be discounted. 

in scale. Let the scale factor as applied to the o~-* 
values be denoted k. The o~- values, which are unscaled, 
are related to the corresponding Fo's by the relation 

Fo=k .~  . (3) 

The electron density at a point r in the cell is given by 
N --+ 

1 ~r k.~'n exp ( -2z r iHn .  r) .  (4) o(r)= v 

Writing o~-n as ~ n exp (ian), and following a devel- 
opment similar to that given by Cruickshank (1949a) 
one obtains 

1 
a2{ 0(r)} = ~/2 [ X kEaE(o~n) { ~r cos (2nHn . r-c~n)} 2 

3 f o r m  

+a2(c~n)k2o~-2.{ X sin (2~Hn. r -~n)}  2] 
f o r m  

+ k-2a2(k)o(r) 2 , (5) 

where Z" is a summation over the independent reflec- 
3 

tions only and X is a summation over all the sym- 
f o r m  

metry equivalents. For a general position r in the cell, 
the values for the cos 2 and sin 2 functions may be re- 
placed by the corresponding mean value for a randomly 
distributed argument. As has been shown by Cruick- 
shank (1949a), (5) then reduces to 

1 N 

+ G~(~n)k2~} +k-~a~(k)e(r)~. (6) 

These expressions differ from those given by Cruick- 
shank by the inclusion of the term involving the stan- 
dard deviation of the scale factor. In general this will 
be of importance only at or near the nuclear rest posi- 
tion, but it can be seen by taking examples from the 
literature that its contribution is far from trivial at 
these points. Typically it increases the calculated stan- 
dard deviation a{e(r)} by factors ranging from 1.8 to 
4.0 at the atomic centres. The extra term applies only 
to the absolute value of o(r) and must be considered 
when comparing residual densities at similar sites in 
different structures, but not in the same structure. If 
0(r) is the same at both positions the errors due to 
the scale factor will be identical in the latter case and 
can be neglected in the comparison. 

The effect of scale factor errors on the structural 
parameters is already incorporated in the normal 
method of least-squares refinement since the off- 
diagonal terms include the interaction of the scale 
factor and the other parameters. 

P h a s e  e r r o r s  

Another important case of systematic error is the 
residual phase errors in non-centrosymmetric struc- 

* Throughout this paper the notation, other than that 
defined in the text, is as in Maslen (1968a). 

A C 24B - 3* 
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tures. In evaluating electron-density distributions the 
phases are generally taken from a theoretical calcula- 
tion of the structure factors, and thus include the 
effects of any shortcomings in the theoretical models 
for the atomic scattering and temperature factors as 
well as those of residual errors in the structural par- 
ameters. In centrosymmetric structures where the 
phases are restricted to 0 or zc the probability of phase 
errors is small, but such errors occur invariably in 
non-centrosymmetric structures. Since the phases do 
not enter the refinement equations their associated 
errors are not calculated directly, and must be esti- 
mated by other arguments. Customarily they are cal- 
culated from the Fo versus Fe agreement. Consider 
Fig. 1. In general Fe is known exactly and Fo is known, 
but the phase error &~ is indeterminate. However for 
small 6a Fo-Fc is very nearly equal to the component 
of F o - F c  parallel to Fe. For a random distribution of 
difference density the component perpendicular to Fc 
will have the same probability distribution so that to 
a good approximation 

az(ocn)= ((Fno- Fnc)Z)/F]o (7) 

where the mean is taken over the appropriate range 
of Fo values. 

If the error in Fno is also estimated from the Fo 
versus Fc agreement the standard deviations are then 
1/2 times as great as those for a similar centrosym- 
metric structure. This treatment is valid only if the dif- 
ference synthesis, and consequently the phase errors, 
are random. Real features in the difference synthesis 
will be altered by systematic phase errors by amounts 
given approximately by the n-shift rule (Shoemaker, 
Donohue, Schomaker & Corey, 1950). However, as 
shown in the preceding papers (Maslen, 1968a, b), the 
effect of the phase errors is not just a pure scaling 
down of the real features in the synthesis. There is also" 
an appreciable drop in resolution, and in symmetrical 
systems such as benzene rings spurious features may 
occur in such a regular manner that they appear to be 
real. It is therefore unwise to attempt to analyse elec- 
tron-density distributions quantitatively in Fc phased 
non-centrosymmetric structures. 

k2o'2(o~n) -= ( - ~ J ~ -  (Fno-lFnc+ AFnl) 2) (9) 
so that (5) and (6) reduce to 

1 
°'2{ 0(r)) = -~-i X kZaZ(~-n) [{ Z" cos (2~znn. r - a n ) )  z 

form 
+{ 27 sin (2~zHn. r-o~n)}]2+k-Za2(k)o(r) z (10) 

form 
and 

2 u 
a2{Q(r)} = -V- Y 27 k2a2(~n) + k-2a2(k)Q(r)2 (11) 

respectively. 
However, a2{~(r)} can also be estimated directly 

from the electron-density distribution by comparing 
the difference density at chemically equivalent points. 
This yields 

1 o(rj)} dr 

a2{0(r)} -- J -  1 I dz (12) 

t) 
Relations (11) and (12) are alternative methods of 

calculating the standard deviations, which provide a 
check on their validity. Likewise (8) gives a check on 
the a(o.~'n) obtained from counting statistics, or prefer- 
ably from a comparison of equivalent reflexions (Ibers, 
1967). Unlike the use of the Fo versus Fc agreement 
for this purpose this is largely independent of the 
reliability of theoretical models for atomic scattering 
and thermal motion. Molecular but non-crystallo- 
graphic symmetry also provides a check on the validity 
of the standard deviations of the structural parameters, 
which may be compared by means of the multiparam- 
eter %z significance test (International Tables for X-ray 
Crystallography, 1959). Such tests are a valuable guide 
to the reliability of the calculated standard deviations. 
It should be noted, however, that systematic errors 
which can be treated as random for one parameter 
cannot necessarily be treated as random for another. 
Thus a scale error may have a negligible effect on the 
positional parameters in a structure, a moderate in- 
fluence on the thermal parameters, and a large effect 

Accuracy of phase-refined structures 
For a phase-refined structure the phase-angle standard 
deviation may be assessed from equation (5) in Maslen 
(1967a) and the reasoning given in deriving (7) above 
to be 

a(O~n) = ( JJ-~l ) a(Fn°-- lFnc + dFnl)/Fn° " (8) 

The standard deviation in the electron density may 
now be obtained by substituting this expression for 
a(an) in equations (5) and (6) above. Moreover in a 
phase-refined structure the standard deviation in ~-n 
can be calculated from the agreement between Fno and 
IF~c + AFnl by means of the expression 

Fo 

Fig. 1. Phase diagram of the observed and calculated structure 
factors. 
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on the electron density near the centres of the heavier 
atoms. Separate checks are necessary for each type of 
parameter. 

For many purposes chemically equivalent parameters 
or regions of electron density may be averaged, and 
the standard deviations are a factor of l,/J lower than 
those on the individual values. This frequently provides 
an improvement in accuracy which would be difficult 
to achieve by increasing the precision in the intensity 
data. 

Criteria for accuracy in structure analysis 

Cruickshank (1960) has determined the conditions 
necessary to attain the following desirable levels of 
precision in crystal structure analysis: 

(i) A coordinate standard deviation of 0.0015 A. 
(ii) Thermal parameters to 1% precision. 
(iii) A study of the bonding-electron distributions. 

The requirements are problem-dependent, and 
Cruickshank has chosen the structures of anthracene 
(Sparks, 1958), and a platinum complex (PtOzClzHz4)2 
(Swallow & Truter, 1960) to represent different degrees 
of difficulty. For the latter structure 

(I) a crystal temperature < 100°K, 
(II) a final R of 1%, 

(III) three-dimensional data gathered completely out to 
2 sin 0/2 2 1.2 A and at random out to 1-8 A-l,  

(IV) data free from errors systematic with 0, and 
(V) an absolute scale of the IFo] determined experi- 

mentally 

are necessary for the levels of precision stated. (For 
the anthracene structure an R value of 3½% will give 
sufficient accuracy.) It is assumed that all errors may 
be treated as random and, for attaining level (iii), that 
the phases are absolutely correct. This is equivalent to 
regarding the study of bonding electrons as possible 
only for centrosymmetric structures. 

Since 1960 more information on accurate structure 
analysis has become available, and it is possible to 
review Cruickshank's criteria in the light of more recent 
experience. In view of the pronounced effect of scale 
errors on the electron-density distribution it is neces- 
sary to consider requirement (IV) in more detail. The 
features associated with bonding electrons in final dif- 
ference densities generally attain peak values of around 
0.2 e.A -3. In order to make meaningful analyses of 
these features a standard deviation of approximately 
one sixth of this amount, i.e. 0.03 e.A -3, is necessary. 
The mean isotropic temperature factor coefficient for 
a crystal structure conforming to Cruickshank's 
criteria will be approximately 1 A2, and the peak 
heights at a carbon and a platinum position will be 
approximately 12e.A -3 and 600e.A -3 respectively. 
For the scale-factor error contribution to the electron 
density to be less than 0.03 e.A -3 at a carbon and a 
platinum position, k- la(k)  must be less than 0.25% 
for carbon and 0.005% for platinum. 

This emphasizes the difficulty of making precise 
measurements of the electron density at the atomic 
positions, which has been noted recently by Stewart 
(1967). 

A further factor which must be considered is the 
errors in positional and thermal parameters which 
result from the use of spherically averaged isolated 
atom ground-state wave functions in the refinement 
process. For hydrogen, which is the most extreme ex- 
ample, the error in the atomic position is approximately 
0.07 A (Stewart, Davidson & Simpson, 1965) but even 
for a nitrogen atom the error may be as large as 0.02 A 
(Dawson, 1964). The mean isotropic temperature factor 
errors for hydrogen and for an  sp  2 carbon with one 
hydrogen substituent have been estimated to be 2.3 A 2 
and 0.15 A 2 respectively (Stewart, Davidson & Simp- 
son, 1965; O'Connell, Rae & Maslen, 1966) while 
strongly anisotropic errors are expected for a terminal 
nitrogen atom (Dawson, 1964). 

The precise magnitudes of these corrections are un- 
certain, however, and until more reliable bonded-atom 
wave functions are available it appears preferable to 
determine the positional and thermal parameters by 
neutron, rather than X-ray diffraction. 

Finally, for an analysis of the electron-density dis- 
tribution, it is necessary that the structure should be 
either centrosymmetric or phase-refined. 

The receipt of a Nuffield Foundation Travelling 
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